Integrable cellular automata, free fermions and KPZ solvable models.

Rigorous Statistical Mechanics and Related Topics RIMS, Kyoto 18 November 2021

Matteo Mucciconi — based on a collaboration with Takashi Imamura and Tomohiro Sasamoto

arXiv:2106.11922[math.CO] arXiv:2106.11913[math.CO]

Plan of the talk

• **Part 1.** Presenting the problem we want to solve: free fermions at positive temperature

• Part 2. combinatorial construction of the correspondence KPZ models - free fermionic systems

mysterious connections between KPZ equation and

Plan of the talk

• Part 1. Presenting the problem we want to solve: free fermions at positive temperature

mysterious connections between KPZ equation and

KPZ equation

- h = random height function
- What is it?
- Well posedness:
 - Bertini-Giacomin '97
 - Hairer '11
 - Gubinelli-Perkowski-Imkeller '12

[Kardar-Parisi-Zhang '86]

 $\partial_t h = \partial_x^2 h + (\partial_x h)^2 + \eta$

$\eta =$ space-time white noise

KPZ equation : exact solutions $\begin{cases} \partial_t h = \partial_x^2 h \\ h(x,0) = 1 \end{cases}$

 Narrow wedge initial conditions [Amir-Corwin-Quastel, Calabrese-Le Doussal, Dotsenko, Sasamoto-Spohn '11]

$$\mathbb{E}\left[\exp\left(-ze^{h(0,t)+t/12}\right)\right] = \det\left(1 - fK_{\text{Airy}}\right)_{\mathscr{L}^{2}(\mathbb{R})}$$

$$K_{\text{Airy}}(x, y) = \int_{0}^{\infty} \operatorname{Ai}(x + z) \operatorname{Ai}(y + z) dz$$

Airy Kernel

$$\sum_{x}^{2} h + (\partial_{x} h)^{2} + \eta$$
$$= \log(\delta_{x})$$

$$f(x) = \frac{1}{1 + e^{-xt^{1/3}/z}}$$

Fermi factor

KPZ equation : exact solutions $\begin{cases} \partial_t h = \partial_x^2 h + (\partial_x h)^2 + \eta & x \in \mathbb{R}_+ \\ h(x,0) = \log(\delta_x) \\ \partial_x h(x = 0,t) = A \end{cases}$

Narrow wedge initial conditions in half space

$$\mathbb{E}_{hs}\left[\exp\left(-ze^{h(0,t)+t/12}\right)\right] = \Pr\left(1-fK\right)_{\mathscr{L}^{2}(\mathbb{R})}$$

$$f(x,y) \qquad \qquad f(x) = \frac{1}{1+e^{-xt^{1/3}/z}}$$

K(

2x2 matrix kernel (Airy-like)

[Gueudre-Le Doussal '12, Borodin-Bufetov-Corwin'16, Barraquand-Borodin-Corwin-Wheeler '11]

Fermi factor

KPZ equation : exact solutions

- Narrow wedge initial conditions
- Narrow wedge initial conditions in half space

- Mysterious relations between free fermions and KPZ equation
- Apparent only from the solutions
- Can we establish connections between KPZ eq. and free fermions a priori?

$$\mathbb{E}\left[\exp\left(-ze^{h(0,t)+t/12}\right)\right] = \det\left(1-fK_{\text{Airy}}\right)$$

$$\mathbb{E}_{\text{hs}}\left[\exp\left(-ze^{h(0,t)+t/12}\right)\right] = \Pr\left(1-fK\right)_{\mathscr{L}^{2}(t)}$$

- Solutions are obtained through Bethe Ansatz (BA)
- BA is very powerful but requires difficult calculations and (often) non-rigorous arguments
- Can we create an elementary theory to solve the KPZ eq.?

How to solve the KPZ equation with rigor?

- KPZ is very irregular, also moments diverge fast!
- KPZ eq. can be approximated by discrete solvable models
 - Solvable polymer models (e.g. Log-Gamma polymers)
 - Solvable particle systems (ASEP, q-TASEP)
- Solvable models depend on a temperature parameter $q \in (0,1)$.

$$h^{(q)}(x,t)$$
 -

...how to solve discrete models?

$$\xrightarrow{a \to 1} h^{KPZ}(x, t)$$

Solvable KPZ models and symmetric functions

- functions from rep. theory
- Typical model: *q-Push TASEP* [Borodin-Petrov '12]

Typical feature: Assume step initial conditions

$$\mathbb{P}(\eta_n(t) - n = k) = \sum_{\mu_1 = k} \frac{b_\mu \mathscr{P}_\mu(a)\mathscr{Q}}{Z_{a,b_t}^q}$$

• Solvable models in KPZ class are deeply connected to special symmetric

$$\eta_n(t)_{|t=0} = n$$

 $\mathscr{P}_{\mu}(b_t)$

q-Whittaker measure [Borodin-Corwin '11]

$$\mu = (\mu_1 \ge \mu_2 \ge \dots \ge 0)$$

Solvable KPZ models and symmetric functions

$\mathbb{P}(\eta_n(t) - n = k) =$

- •KPZ behavior captured by marginal μ_1 of the q-Whittaker measure
- Corwin, Borodin-Corwin-Sasamoto] but no relation with free fermions.

• **GOAL** : relate μ_1 with natural statistics of a system of free fermions

$$\sum_{\mu_1=k} \frac{b_{\mu} \mathcal{P}_{\mu}(a) \mathcal{P}_{\mu}(b_t)}{Z_{x,b_t}^q}$$

•Formulas for η_n or μ_1 are obtained through various techniques (Macdonald operators, Markov duality, Bethe Ansatz, Hecke algebras, Fock space...) • Fredholm determinant formulas for μ_1 available [Tracy-Widom, Borodin-

Positive temperature Free Fermions

• Periodic Schur measure [Borodin '06]

$$\mathbb{P}(\lambda) = \frac{1}{\tilde{Z}_{X,Y}^q} \sum_{\rho} q^{|\rho|} s_{\lambda/\rho}$$

•
$$\mathbb{P}(S=k) \propto q^{k^2/2} t^k$$
 for $k \in \mathbb{Z}$ in

- $(\lambda_1 + S, \lambda_2 + S, \lambda_3 + S, ...)$ is a determinantal point process
- Free fermionic nature of the PSM + edge scaling asymptotics studied in [Betea-Bouttier]

 $a(a)s_{\lambda/\rho}(b)$

dependent of λ

Figures from [Betea-Bouttier]

Positive temperature Free Fermions

$$K(x, y) = \frac{1}{(2\pi i)^2} \oint_{|z|=r} \frac{dz}{z^{x+1}} \oint_{|w|=r'} \frac{dw}{w^{-y+1}} \frac{F(z)}{F(w)} \kappa(z, w),$$

$$F(z) = \prod_{i \ge 1} \frac{(b_i/z;q)_{\infty}}{(a_i z;q)_{\infty}} \qquad \qquad \kappa(z,w) = \sqrt{\frac{w}{z}} \frac{(q;q)_{\infty}^2}{(z/w,qw/z;q)_{\infty}} \frac{\vartheta_3(\zeta z/w;q)}{\vartheta_3(\zeta;q)}$$

$\mathbb{P}(\lambda_1 + S < s) = \det(1 + K)_{\ell^2\{s, s+1, ...\}}$

• $(\lambda_1 + S, \lambda_2 + S, \lambda_3 + S, ...)$ is a determinantal point process with correlation

 $\mu \sim \frac{b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)}{Z_{x,y}^{q}}$

Positive temperature free fermions

 $\lambda \sim \frac{1}{\tilde{Z}_{X,Y}^q} \sum_{\rho} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y)$

$$\mu \sim \frac{b_{\mu} \mathcal{P}_{\mu}(x) \mathcal{P}_{\mu}(y)}{Z_{x,y}^{q}}$$

THEOREM (Imamura-M.-Sasamoto '21)

χ independent of μ_1 and $\mathbb{P}(\chi = n) = q^n(q^{n+1};q)_\infty$

Positive temperature free fermions

$$\lambda \sim \frac{1}{\tilde{Z}_{X,Y}^q} \sum_{\rho} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y)$$

$$\mu \sim \frac{b_{\mu} \mathcal{P}_{\mu}(x) \mathcal{P}_{\mu}(y)}{Z_{x,y}^{q}}$$

 χ independent of μ_1 and $\mathbb{P}(\chi = n) = q^n (q^n)$

Comments on (\star) :

- reveals the origin of determinantal formulas for KPZ solvable models
- suggests a new paradigm to solve models

Positive temperature free fermions

$$\lambda \sim \frac{1}{\tilde{Z}_{X,Y}^q} \sum_{\rho} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y)$$

THEOREM (Imamura-M.-Sasamoto '21)

$$^{n+1};q)_{\infty}$$

• reveals combinatorial properties between Schur polynomials and q-Whittaker polynomials

$$\mu \sim \frac{b_{\mu} \mathcal{P}_{\mu}(x) \mathcal{P}_{\mu}(y)}{Z_{x,y}^{q}}$$

 μ_1

 χ independent of μ_1 and $\mathbb{P}(\chi = n) = q^n(q^n)$

Comments on (\star) :

- reveals the origin of determinantal formulas for KPZ solvable models
- suggests a new paradigm to solve models

Positive temperature free fermions

$$\lambda \sim \frac{1}{\tilde{Z}_{X,Y}^q} \sum_{\rho} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y)$$

THEOREM (Imamura-M.-Sasamoto '21)

$$+\chi \stackrel{\mathcal{D}}{=} \lambda_1 \qquad (\star)$$

$$^{n+1};q)_{\infty}$$

• reveals combinatorial properties between Schur polynomials and q-Whittaker polynomials

 χ independent of μ_1 and $\mathbb{P}(\chi = n) = q^n(q^{n+1};q)_{\infty}$

More Comments on (\star) :

- A similar equivalence holds also between KPZ models in half space and other models of Free fermions (studied by [Betea-Bouttier-Nejjar-Vuletic'17])
- Earlier results relating KPZ models and free fermions:
 - [Dean-Le Doussal-Majumdar-Schehr'15]
 - [Borodin'16], [Borodin-Gorin'16], [Borodin-Ohlshanki'16], [Borodin-Corwin-Barraquand-Wheeler'17]
- In previous results the relation is deduced from comparison of formulas.
- We prove the correspondence a priori and use it to derive solution of KPZ models!

Plan of the talk

• Part 2. combinatorial construction of the correspondence KPZ models - free fermionic systems

RSK.

• We prove (\star) combinatorially, developing a (bijective!) q-extension of the

- RSK.
- Combinatorial formulas

• We prove (\star) combinatorially, developing a (bijective!) q-extension of the

sum over semi-standard tableaux

- RSK.
- **Combinatorial formulas** \bullet

 $s_{\lambda/\rho}(x_1, x_2) = x_1^3 x_2 + x_1^2 x_2^2 + x_1^2 x_2^2 + x_1 x_2^3$

• We prove (\star) combinatorially, developing a (bijective!) q-extension of the

sum over semi-standard tableaux

- RSK.
- Combinatorial formulas

• We prove (\star) combinatorially, developing a (bijective!) q-extension of the

sum over "vertically strict tableaux"

 $\sum_{\lambda,\rho} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_i y_j;q)_{\infty}}$ $\sum_{u} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y) = \prod_{i,j} \frac{1}{(x_{i} y_{j}; q)_{\infty}}$

 $(\star) \Leftrightarrow \sum_{\lambda} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y) = \sum_{\lambda} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)$ $\mu_1 + \nu_1 = k$ λ, ρ $\lambda_1 = k$

 $(\star) \Leftrightarrow \sum_{\lambda} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y) = \sum_{\lambda} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)$ $\mu_1 + \nu_1 = k$ λ, ρ $\lambda_1 = k$

$$\sum_{\lambda,\rho} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_{i}y_{j};q)_{\infty}} = \sum_{\lambda,\rho} \sum_{P,Q \in SST(\lambda/\rho)} q^{|\rho|} x^{P} y^{Q}$$

$$\sum_{\mu,\nu} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_{i}y_{j};q)_{\infty}} = \sum_{\mu,\nu} \sum_{\kappa \in \mathscr{K}(\mu)} \sum_{V,W \in VST(\mu)} q^{|\nu|+|\kappa|+\mathscr{K}(V)+\mathscr{K}(W)} x^{V}$$

$$\mathscr{K}(\mu) = \{\kappa = (\kappa_{1}, ..., \kappa_{\mu_{1}}) : \kappa_{i} \ge \kappa_{i+1} \text{ if } \mu_{i}' = \mu_{i+1}'\}$$

$$b_{\mu} = \prod_{i \ge 1} (q;q)_{\mu_{i}-\mu_{i+1}}^{-1} = \sum_{\kappa \in \mathscr{K}(\mu)} q^{\kappa_{1}+\kappa_{2}+\dots+\kappa_{\mu_{1}}} \qquad \mu = \underbrace{\prod_{i \ge \kappa_{2} \ge \kappa_{3}}}_{\kappa_{1} \ge \kappa_{2} \ge \kappa_{3}}$$

$$\sum_{\lambda,\rho} q^{|\rho|} s_{\lambda l \rho}(x) s_{\lambda l \rho}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_{i} y_{j};q)_{\infty}} = \sum_{\lambda,\rho} \sum_{P,Q \in SST(\lambda l \rho)} q^{|\rho|} x^{P} y^{Q}$$

$$\sum_{\mu,\nu} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_{i} y_{j};q)_{\infty}} = \sum_{\mu,\nu} \sum_{\kappa \in \mathscr{K}(\mu)} \sum_{V,W \in VST(\mu)} q^{|\nu|+|\kappa|+\mathscr{K}(V)+\mathscr{K}(W)} x^{V}$$

$$\mathscr{K}(\mu) = \{\kappa = (\kappa_{1}, \dots, \kappa_{\mu_{1}}) : \kappa_{i} \ge \kappa_{i+1} \text{ if } \mu_{i}' = \mu_{i+1}'\}$$

$$b_{\mu} = \prod_{i \ge 1} (q;q)^{-1}_{\mu_{i}-\mu_{i+1}} = \sum_{\kappa \in \mathscr{K}(\mu)} q^{\kappa_{1}+\kappa_{2}+\dots+\kappa_{\mu_{1}}} \qquad \mu = \prod_{\kappa_{1} \ge \kappa_{2} \ge \kappa_{3}} \mu$$

$$\sum_{\lambda,\rho} q^{|\rho|} s_{\lambda l \rho}(x) s_{\lambda l \rho}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_{i} y_{j};q)_{\infty}} = \sum_{\lambda,\rho} \sum_{P,Q \in SST(\lambda l \rho)} q^{|\rho|} x^{P} y^{Q}$$

$$\sum_{\mu,\nu} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_{i} y_{j};q)_{\infty}} = \sum_{\mu,\nu} \sum_{\kappa \in \mathscr{K}(\mu)} \sum_{V,W \in VST(\mu)} q^{|\nu|+|\kappa|+\mathscr{K}(V)+\mathscr{K}(W)} x^{V}$$

$$\mathscr{K}(\mu) = \{\kappa = (\kappa_{1}, \dots, \kappa_{\mu_{1}}) : \kappa_{i} \ge \kappa_{i+1} \text{ if } \mu_{i}' = \mu_{i+1}'\}$$

$$b_{\mu} = \prod_{i \ge 1} (q;q)^{-1}_{\mu_{i}-\mu_{i+1}} = \sum_{\kappa \in \mathscr{K}(\mu)} q^{\kappa_{1}+\kappa_{2}+\dots+\kappa_{\mu_{1}}} \qquad \mu = \prod_{\kappa_{1} \ge \kappa_{2} \ge \kappa_{3}} \mu$$

$$s_{\lambda/\rho}(x)s_{\lambda/\rho}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_{i}y_{j};q)_{\infty}} = \sum_{\lambda,\rho} \sum_{P,Q \in SST(\lambda/\rho)} q^{|\rho|}x^{P}y^{Q}$$

$$b_{\mu}\mathscr{P}_{\mu}(x)\mathscr{P}_{\mu}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_{i}y_{j};q)_{\infty}} = \sum_{\mu,\nu} \sum_{\kappa \in \mathscr{K}(\mu)} \sum_{V,W \in VST(\mu)} q^{|\nu|+|\kappa|+\mathscr{K}(V)+\mathscr{K}(W)}x^{V}$$

$$= \{\kappa = (\kappa_{1}, \dots, \kappa_{\mu_{1}}) : \kappa_{i} \ge \kappa_{i+1} \text{ if } \mu_{i}' = \mu_{i+1}'\}$$

$$b_{\mu} = \prod_{i \ge 1} (q;q)_{\mu_{i}-\mu_{i+1}}^{-1} = \sum_{\kappa \in \mathscr{K}(\mu)} q^{\kappa_{1}+\kappa_{2}+\dots+\kappa_{\mu_{1}}} \qquad \mu = \prod_{\kappa_{1} \ge \kappa_{2} \ge \kappa_{3}} \kappa_{1} \ge \kappa_{2} \ge \kappa_{3}$$

$$(\star) \Leftrightarrow$$

$$\sum_{\substack{\lambda,\rho\\\lambda_1=k}} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y) = \sum_{\substack{\mu_1+\nu_1=k}} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)$$

$$\sum_{\lambda,\rho} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y) = \frac{1}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_i y_j;q)_{\infty}} \prod_{i,j}$$

$$\sum_{\mu,\nu} \frac{q^{|\nu|} b_{\mu} \mathcal{P}_{\mu}(x) \mathcal{P}_{\mu}(y)}{(q;q)_{\infty}} \prod_{i,j} \frac{1}{(x_i y_j)_{\infty}} \frac{1}{(x_i y_j)_{\infty}} \sum_{i,j} \frac{1}{(x_i y_j)_{\infty}} \sum_{i$$

•
$$\mathscr{K}(\mu) = \{\kappa = (\kappa_1, \dots, \kappa_{\mu_1}) : \kappa_i \ge \kappa_{i+1} \text{ if } \mu_i\}$$

 $\frac{1}{(q)_{\infty}} = \sum_{\lambda,\rho} \sum_{P,Q \in SST(\lambda/\rho)} q^{|\rho|} x^{P} y^{Q}$ $\frac{1}{v_j; q)_{\infty}} = \sum_{\mu, \nu} \sum_{\kappa \in \mathcal{K}(\mu)} \sum_{V, W \in VST(\mu)} q^{|\nu| + |\kappa| + \mathcal{H}(V) + \mathcal{H}(W)} x^V y^W$ $i'_{i} = \mu'_{i+1}$

IDEA: $(P, Q) \xleftarrow{\Upsilon} (V, W; \kappa, \nu)$

 $(\star) \Leftrightarrow \sum_{\lambda} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y) = \sum_{\lambda} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)$ $\mu_1 + \nu_1 = k$ λ, ρ $\lambda_1 = k$

Construction of $(P, Q) \leftrightarrow (V, W; \kappa, \nu)$ (sketch)

Construction of $(P, Q) \leftrightarrow (V, W; \kappa, \nu)$ (sketch) $P \qquad Q$

Construction of $(P, Q) \leftrightarrow (V, W; \kappa, \nu)$ (sketch) $P \qquad Q$

• First construct u by "squeezing" P, Q

Construction of $(P, Q) \leftrightarrow (V, W; \kappa, \nu)$ (sketch) $P \qquad Q$

• First construct u by "squeezing" P, Q

 $\nu =$

Construction of $(P, Q) \leftrightarrow (V, W; \kappa, \nu)$ (sketch) $\nu =$

• First construct ν by "squeezing" P, Q

- First construct ν by "squeezing" P, Q
- From now on assume pair (P, Q) is "squeezed"

• To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

• To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

• To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

$(P, Q) \rightarrow (P', Q')$

• To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

 $(P, Q) \rightarrow (P', Q') \rightarrow \cdots \rightarrow (P^{(n)}, Q^{(n)})$

RSK

• To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

 $(P, Q) \rightarrow (P', Q') \rightarrow \cdots \rightarrow (P^{(n)}, Q^{(n)})$

• To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

 $(P,Q) \rightarrow (P',Q') \rightarrow \cdots \rightarrow (P^{(n)},Q^{(n)}) \longrightarrow (V,W)$

• It remains to construct κ .

- It remains to construct κ .
- μ = shape of (V, W) $\tilde{\lambda}/\tilde{\rho}$ = shape of $(P^{(n)}, Q^{(n)})$ for *n* large

- It remains to construct κ .
- μ = shape of (V, W) $\tilde{\lambda}/\tilde{\rho}$ = shape of $(P^{(n)}, Q^{(n)})$ for *n* large
- Define $\tau_i = \tilde{\rho}'_i n \times \mu'_i$

- It remains to construct κ .
- μ = shape of (V, W) $\tilde{\lambda}/\tilde{\rho}$ = shape of $(P^{(n)}, Q^{(n)})$ for *n* large

• Define $\tau_i = \tilde{\rho}'_i - n \times \mu'_i$

 $\tau_1 = 0 = 30 - 10 \times 3$

 $\mu =$

- It remains to construct κ .
- μ = shape of (V, W) $\tilde{\lambda}/\tilde{\rho}$ = shape of $(P^{(n)}, Q^{(n)})$ for *n* large

• Define $\tau_i = \tilde{\rho}'_i - n \times \mu'_i$

 $\tau_1 = 0 = 30 - 10 \times 3$ $\tau_2 = 2 = 22 - 10 \times 2$

 $\mu =$

- It remains to construct κ .
- μ = shape of (V, W) $\tilde{\lambda}/\tilde{\rho}$ = shape of $(P^{(n)}, Q^{(n)})$ for *n* large

• Define $\tau_i = \tilde{\rho}'_i - n \times \mu'_i$

 $\mu =$

 $\tau_1 = 0 = 30 - 10 \times 3$ $\tau_2 = 2 = 22 - 10 \times 2$ $\tau_3 = 1 = 21 - 10 \times 2$

- It remains to construct κ .
- μ = shape of (V, W) $\tilde{\lambda}/\tilde{\rho}$ = shape of $(P^{(n)}, Q^{(n)})$ for *n* large

• Define $\tau_i = \tilde{\rho}'_i - n \times \mu'_i$

 $\mu =$

 $\tau_1 = 0 = 30 - 10 \times 3$ $\tau_2 = 2 = 22 - 10 \times 2$ $\tau_3 = 1 = 21 - 10 \times 2$ $\tau_4 = 1 = 11 - 10 \times 1$

W_{-}				
	1	2	2	3
	2	5	Ŋ	
	3			

 \mathcal{T} (0,2,1,1)

• $(P, Q) \leftrightarrow (V, W; \tau)$ is a bijection, but τ depends on (V, W)!

• $(P, Q) \leftrightarrow (V, W; \tau)$ is a bijection, but τ depends on (V, W)!

LEMMA (IMS'21) $\tau_i = \kappa_i + \mathcal{H}_i(V$ $\mathcal{H}_i = \text{local energy function}$

$$(V) + \mathcal{H}_i(W)$$

• $(P, Q) \leftrightarrow (V, W; \tau)$ is a bijection, but τ depends on (V, W)!

LEMMA (IMS'21) $\tau_i = \kappa_i + \mathcal{H}_i(V$

 $\mathcal{H}_i = \text{local energy function}$

Comments on (Δ) :

- integrable systems, Kashiwara crystals, ...
- \mathscr{H}_i appear in the description of *phase shift* in the \mathfrak{Sl}_n Box and Ball System

$$(V) + \mathcal{H}_i(W)$$

Shows deep connections between theories of skew tableaux and theories of discrete

• This is because the skew RSK dynamics is a generalization of the Box and Ball Systems

- Classical RSK commutes with \mathfrak{Sl}_n Kashiwara operators
- Energy \mathscr{H} comes from affine $(\widehat{\mathfrak{Sl}}_n)$ crystals

• To prove energy (\mathscr{H}) formulas we need to study symmetries of the skew RSK

- Classical RSK commutes with \mathfrak{Sl}_n Kashiwara operators
- Energy \mathscr{H} comes from affine $(\widehat{\mathfrak{Sl}}_n)$ crystals

• To prove energy (\mathscr{H}) formulas we need to study symmetries of the skew RSK

• IDEA : equip (P, Q) and (V, W) of $\widehat{\mathfrak{gl}}_n$ - bicrystal structure preserved by RSK

Affine crystal graphs

- Vertically strict tableaux are tensor product of KR crystals
- The crystal graph $VST(\mu)$ is connected [Kashiwara'90]
- Demazure subgraph: remove "bad" $\widetilde{e}_0, \widetilde{f}_0$ arrows
- For any V there exist a path on the Demazure subgraph $\mathscr{L}_V : V \mapsto \mathrm{YAM}(\mu)$

•
$$\mathscr{H}(V) = \# \tilde{f}_0 - \# \tilde{e}_0$$
 in \mathscr{L}_V

[Schilling-Tingley'12]

 $\begin{array}{c|c}2 & 1 & 1\\\hline 3 & \end{array}$

Affine Bicrystal (P, Q)

- On (V, W) bicrystal structure is product structure
- Impose $(P, Q) \mapsto (V, W)$ preserve bicrystal structure
- On (V, W) bicrystal structure is NOT product structure (nontrivial \tilde{e}_0, \tilde{f}_0)
- We transport maps $\mathscr{L}_V, \mathscr{L}_W \mapsto \mathscr{L}_{P,Q}$

Affine Bicrystal (P, Q)

- On (V, W) bicrystal structure is product structure
- Impose $(P, Q) \mapsto (V, W)$ preserve bicrystal structure
- On (V, W) bicrystal structure is NOT product structure (nontrivial \tilde{e}_0, \tilde{f}_0)
- We transport maps $\mathscr{L}_V, \mathscr{L}_W \mapsto \mathscr{L}_{P,O}$

Affine Bicrystal (P, Q)

- On (V, W) bicrystal structure is product structure
- Impose $(P, Q) \mapsto (V, W)$ preserve bicrystal structure
- On (V, W) bicrystal structure is NOT product structure (nontrivial \tilde{e}_0, f_0)
- We transport maps $\mathscr{L}_V, \mathscr{L}_W \mapsto \mathscr{L}_{P,O}$

LEMMA (IMS'21)

 $\mathscr{L}_{P,O}$ linearizes the skew RSK map

To sum up

- $(P, Q) \longleftrightarrow (V, W; \kappa, \nu)$ has the following properties
 - P and V have equal content. Same for Q and W
 - $|\rho| = \mathcal{H}(V) + \mathcal{H}(W) + |\kappa| + |\nu|$ $(\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \cdots)$
 - $\lambda_1 = \mu_1 + \nu_1$

To sum up

- $(P, Q) \longleftrightarrow (V, W; \kappa, \nu)$ has the following properties
 - P and V have equal content. Same for Q and W
 - $|\rho| = \mathcal{H}(V) + \mathcal{H}(W) + |\kappa| + |\nu|$ $(\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \cdots)$

•
$$\lambda_1 = \mu_1 + \nu_1$$

THEOREM (IMS'21)
$$\sum_{\lambda,\rho} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y) = \sum_{\mu_1 + \nu_1 = k} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)$$
$$\lambda_1 = k$$

To sum up

- $(P, Q) \longleftrightarrow (V, W; \kappa, \nu)$ has the following properties
 - P and V have equal content. Same for Q and W

•
$$|\rho| = \mathscr{H}(V) + \mathscr{H}(W) + |\kappa| +$$

•
$$\lambda_1 = \mu_1 + \nu_1$$

THEOREM (IMS'21)

$$\sum_{\substack{\lambda,\rho\\\lambda_1=k}} q^{|\rho|} s_{\lambda/\rho}(x) s_{\lambda/\rho}(y) = \sum_{\substack{\mu_1+\nu_1=k\\\mu_1+\nu_1=k}} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)$$

• THEOREM (IMS'21)
$$\sum_{\substack{\lambda,\rho\\\lambda_1=k}} q^{|\rho|} s_{\lambda/\rho}(x) = \sum_{\substack{\mu_1+\nu_1=k\\\mu_1+\nu_1=k}} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x;q^2)$$

 $- |\nu|$ $(\mathcal{H} = \mathcal{H}_1 + \mathcal{H}_2 + \cdots)$

Conclusion

- Our bijective theory gives direct connection between solvable non-free fermionic models and positive temperature free fermionic models
- Mysterious appearence of a discrete integrable system (generalization of BBS)
- We construct a bijective q-extension of the RSK correspondence Υ
- With Υ we can prove bijectively the Cauchy identities (CI) for q-Whittaker polynomials (first time)
- With Υ we can prove bijectively refinements of the CI relating q-Whittaker and skew-Schur polynomials

1