Integrable cellular automata, free fermions and KPZ solvable models.

Rigorous Statistical Mechanics and Related Topics RIMS, Kyoto
18 November 2021

Matteo Mucciconi - based on a collaboration with Takashi Imamura and Tomohiro Sasamoto
arXiv:2106.11922[math.CO]
arXiv:2106.11913[math.CO]

Plan of the talk

- Part 1. Presenting the problem we want to solve: mysterious connections between KPZ equation and free fermions at positive temperature
- Part 2. combinatorial construction of the correspondence KPZ models - free fermionic systems

Plan of the talk

- Part 1. Presenting the problem we want to solve: mysterious connections between KPZ equation and free fermions at positive temperature

KPZ equation [Kardar-Parisi-Zhang '86]

$$
\partial_{t} h=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}+\eta
$$

- $h=$ random height function
$\eta=$ space-time white noise
- What is it?
- Well posedness:
- Bertini-Giacomin '97
- Hairer '11
- Gubinelli-Perkowski-Imkeller ‘12

KPZ equation : exact solutions

$$
\left\{\begin{array}{l}
\partial_{t} h=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}+\eta \\
h(x, 0)=\log \left(\delta_{x}\right)
\end{array}\right.
$$

- Narrow wedge initial conditions
[Amir-Corwin-Quastel, Calabrese-Le Doussal, Dotsenko, Sasamoto-Spohn '11]

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(-z e^{h(0, t)+t / 12}\right)\right]=\operatorname{det}\left(1-f K_{\text {Airy }}\right)_{\mathscr{L}^{2}(\mathbb{R})} \\
& K_{\text {Arry }}(x, y)=\int_{0}^{\infty} \operatorname{Ai}(x+z) \operatorname{Ai}(y+z) d z \\
& \text { Airy Kernel } \\
& f(x)=\frac{1}{1+e^{-x t^{1 / 3} / z}} \\
& \text { Fermi factor }
\end{aligned}
$$

KPZ equation : exact solutions

$$
\left\{\begin{array}{l}
\partial_{t} h=\partial_{x}^{2} h+\left(\partial_{x} h\right)^{2}+\eta \quad x \in \mathbb{R}_{+} \\
h(x, 0)=\log \left(\delta_{x}\right) \\
\partial_{x} h(x=0, t)=A
\end{array}\right.
$$

- Narrow wedge initial conditions in half space
[Gueudre-Le Doussal '12, Borodin-Bufetov-Corwin'16, Barraquand-Borodin-Corwin-Wheeler '11]

$$
\begin{aligned}
& \mathbb{E}_{\mathrm{hs}}\left[\exp \left(-z e^{h(0, t)+t / 12}\right)\right]=\operatorname{Pf}(1-f K)_{\mathscr{L}^{2}(\mathbb{R})} \\
& K(x, y) \quad f(x)=\frac{1}{1+e^{-x t^{t / 3}} / z}
\end{aligned}
$$

2x2 matrix kernel
(Airy-like)
Fermi factor

KPZ equation : exact solutions

- Narrow wedge initial conditions
- Narrow wedge initial conditions in half space
- Mysterious relations between free fermions and KPZ equation
- Apparent only from the solutions
- Can we establish connections between KPZ eq. and free fermions a priori?

$$
\begin{aligned}
& \mathbb{E}\left[\exp \left(-z e^{h(0, t)+t / 12}\right)\right]=\operatorname{det}\left(1-f K_{\text {Airy }}\right)_{\mathscr{L}^{2}(\mathbb{R})} \\
& \mathbb{E}_{\mathrm{hS}}\left[\exp \left(-z e^{h(0, t)+t / 12}\right)\right]=\operatorname{Pf}(1-f K)_{\mathscr{L}^{2}(\mathbb{R})}
\end{aligned}
$$

- Solutions are obtained through Bethe Ansatz (BA)
- BA is very powerful but requires difficult calculations and (often) non-rigorous arguments
- Can we create an elementary theory to solve the KPZ eq.?

How to solve the KPZ equation with rigor?

- KPZ is very irregular, also moments diverge fast!
- KPZ eq. can be approximated by discrete solvable models
- Solvable polymer models (e.g. Log-Gamma polymers)
- Solvable particle systems (ASEP, q-TASEP)
- Solvable models depend on a temperature parameter $q \in(0,1)$.

$$
h^{(q)}(x, t) \longrightarrow h_{q \rightarrow 1}^{K P Z}(x, t)
$$

- ...how to solve discrete models?

Solvable KPZ models and symmetric functions

- Solvable models in KPZ class are deeply connected to special symmetric functions from rep. theory
- Typical model: q-Push TASEP [Borodin-Petrov '12]

- Typical feature: Assume step initial conditions $\quad \eta_{n}(t)_{\mid t=0}=n$

$$
\mathbb{P}\left(\eta_{n}(t)-n=k\right)=\sum_{\mu_{1}=k} \frac{b_{\mu} \mathscr{P}_{\mu}(a) \mathscr{P}_{\mu}\left(b_{t}\right)}{Z_{a, b_{t}}^{q}} \quad \begin{aligned}
& \text { q-Whittaker measure } \\
& {[\text { Borodin-Corwin'11] }} \\
& \mu=\left(\mu_{1} \geq \mu_{2} \geq \cdots \geq 0\right)
\end{aligned}
$$

Solvable KPZ models and symmetric functions

$$
\mathbb{P}\left(\eta_{n}(t)-n=k\right)=\sum_{\mu_{1}=k} \frac{b_{\mu} \mathscr{P}_{\mu}(a) \mathscr{P}_{\mu}\left(b_{t}\right)}{Z_{x, b_{t}}^{q}}
$$

-KPZ behavior captured by marginal μ_{1} of the q-Whittaker measure
-Formulas for η_{n} or μ_{1} are obtained through various techniques (Macdonald operators, Markov duality, Bethe Ansatz, Hecke algebras, Fock space...)

- Fredholm determinant formulas for μ_{1} available [Tracy-Widom, BorodinCorwin, Borodin-Corwin-Sasamoto] but no relation with free fermions.
- GOAL : relate μ_{1} with natural statistics of a system of free fermions

Positive temperature Free Fermions

- Periodic Schur measure [Borodin '06]

$$
\mathbb{P}(\lambda)=\frac{1}{\tilde{Z}_{X, Y}^{q}} \sum_{\rho} q^{|\rho|} S_{\lambda / \rho}(a) s_{\lambda / \rho}(b)
$$

- $\mathbb{P}(S=k) \propto q^{k^{2} / 2} t^{k}$ for $k \in \mathbb{Z}$ independent of λ

- $\left(\lambda_{1}+S, \lambda_{2}+S, \lambda_{3}+S, \ldots\right)$ is a determinantal point process
- Free fermionic nature of the PSM + edge scaling asymptotics studied in [Betea-Bouttier]

Positive temperature Free Fermions

$$
\mathbb{P}\left(\lambda_{1}+S<s\right)=\operatorname{det}(1+K)_{\ell^{2}\{s, s+1, \ldots\}}
$$

- $\left(\lambda_{1}+S, \lambda_{2}+S, \lambda_{3}+S, \ldots\right)$ is a determinantal point process with correlation kernel

$$
K(x, y)=\frac{1}{(2 \pi \mathrm{i})^{2}} \oint_{|z|=r} \frac{d z}{z^{x+1}} \oint_{|w|=r^{\prime}} \frac{d w}{w^{-y+1}} \frac{F(z)}{F(w)} \kappa(z, w),
$$

$$
F(z)=\prod_{i \geq 1} \frac{\left(b_{i} / z ; q\right)_{\infty}}{\left(a_{i} z ; q\right)_{\infty}} \quad \kappa(z, w)=\sqrt{\frac{w}{z}} \frac{(q ; q)_{\infty}^{2}}{(z / w, q w / z ; q)_{\infty}} \frac{\vartheta_{3}(\zeta z / w ; q)}{\vartheta_{3}(\zeta ; q)} \quad(z ; q)_{\infty}=\prod_{\ell \geq 0}\left(1-q^{\ell} z\right)
$$

KPZ solvable models

$$
\mu \sim \frac{b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)}{Z_{x, y}^{q}}
$$

Positive temperature free fermions
$\lambda \sim \frac{1}{\tilde{Z}_{X, Y}^{q}} \sum_{\rho} q^{|\rho|} S_{\lambda / \rho}(x) s_{\lambda / \rho}(y)$

KPZ solvable models

Positive temperature free fermions

$$
\mu \sim \frac{b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)}{Z_{x, y}^{q}}
$$

$$
\lambda \sim \frac{1}{\tilde{Z}_{X, Y}^{q}} \sum_{\rho} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)
$$

THEOREM (Imamura-M.-Sasamoto '21)

$$
\mu_{1}+\chi \stackrel{\mathscr{D}}{=} \lambda_{1}
$$

χ independent of μ_{1} and $\mathbb{P}(\chi=n)=q^{n}\left(q^{n+1} ; q\right)_{\infty}$

KPZ solvable models

Positive temperature free fermions

$$
\mu \sim \frac{b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)}{Z_{x, y}^{q}}
$$

$$
\lambda \sim \frac{1}{\tilde{Z}_{X, Y}^{q}} \sum_{\rho} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)
$$

THEOREM (Imamura-M.-Sasamoto '21)

$$
\mu_{1}+\chi \stackrel{\mathscr{D}}{=} \lambda_{1}
$$

χ independent of μ_{1} and $\mathbb{P}(\chi=n)=q^{n}\left(q^{n+1} ; q\right)_{\infty}$

Comments on (\star):

- reveals the origin of determinantal formulas for KPZ solvable models
- suggests a new paradigm to solve models
- reveals combinatorial properties between Schur polynomials and q-Whittaker polynomials

KPZ solvable models

Positive temperature free fermions

$$
\mu \sim \frac{b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)}{Z_{x, y}^{q}}
$$

$$
\lambda \sim \frac{1}{\tilde{Z}_{X, Y}^{q}} \sum_{\rho} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)
$$

THEOREM (Imamura-M.-Sasamoto '21)

$$
\mu_{1}+\chi \stackrel{\mathscr{D}}{=} \lambda_{1}
$$

χ independent of μ_{1} and $\mathbb{P}(\chi=n)=q^{n}\left(q^{n+1} ; q\right)_{\infty}$

Comments on (\star):

- reveals the origin of determinantal formulas for KPZ solvable models
- suggests a new paradigm to solve models
- reveals combinatorial properties between Schur polynomials and q-Whittaker polynomials

THEOREM (Imamura-M.-Sasamoto '21)

$$
\mu_{1}+\chi \stackrel{\mathscr{D}}{=} \lambda_{1}
$$

χ independent of μ_{1} and $\mathbb{P}(\chi=n)=q^{n}\left(q^{n+1} ; q\right)_{\infty}$

More Comments on (\star):

- A similar equivalence holds also between KPZ models in half space and other models of Free fermions (studied by [Betea-Bouttier-Nejjar-Vuletic'17])
- Earlier results relating KPZ models and free fermions:
- [Dean-Le Doussal-Majumdar-Schehr'15]
- [Borodin'16],[Borodin-Gorin'16],[Borodin-Ohlshanki'16],[Borodin-Corwin-Barraquand-Wheeler'17]
- In previous results the relation is deduced from comparison of formulas.
- We prove the correspondence a priori and use it to derive solution of KPZ models!

Plan of the talk

- Part 2. combinatorial construction of the correspondence KPZ models - free fermionic systems
- We prove (\star) combinatorially, developing a (bijective!) q-extension of the RSK.
- We prove (\star) combinatorially, developing a (bijective!) q-extension of the RSK.
- Combinatorial formulas
- $s_{\lambda / \rho}(x)=\sum_{T \in S S T(\lambda / \rho)} x^{T} \quad$ sum over semi-standard tableaux
- We prove (\star) combinatorially, developing a (bijective!) q-extension of the RSK.
- Combinatorial formulas
- $s_{\lambda / \rho}(x)=\sum_{T \in S S T(\lambda / \rho)} x^{T} \quad$ sum over semi-standard tableaux

$$
\begin{aligned}
& s_{\lambda / \rho}\left(x_{1}, x_{2}\right)=x_{1}^{3} x_{2}+x_{1}^{2} x_{2}^{2}+x_{1}^{2} x_{2}^{2}+x_{1} x_{2}^{3}
\end{aligned}
$$

- We prove (\star) combinatorially, developing a (bijective!) q-extension of the RSK.
- Combinatorial formulas

$$
\begin{aligned}
\text { - } s_{\lambda / \rho}(x)= & \sum_{T \in S S T(\lambda / \rho)} x^{T} \quad \text { sum over semi-standard tableaux } \\
\mathscr{P}_{\mu}(x ; q) & =\sum_{V \in V S T(\mu)} q^{\mathscr{H}(V)} x^{V} \quad \text { sum over "vertically strict tableaux" } \\
\text { Example }: \mu=\square & \mathscr{H}=\text { intrinsic energy }
\end{aligned}
$$

Cauchy Identities

- $\sum_{\lambda, \rho} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}$
- $\sum_{\mu} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)=\prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}$

Cauchy Identities

- $\sum_{\lambda, \rho} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}$
- $\sum_{\mu, \nu} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}$

Cauchy Identities

- $\sum_{\lambda, \rho} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda \mid \rho}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}$
- $\sum_{\mu, \nu} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}$

$$
(\star) \Leftrightarrow \sum_{\substack{\lambda, \rho \\ \lambda_{1}=k}} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)=\sum_{\mu_{1}+\nu_{1}=k} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)
$$

Cauchy Identities

- $\sum_{\lambda, \rho} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}=\sum_{\lambda, \rho} \sum_{P, Q \in S S T(\lambda / \rho)} q^{|\rho|} x^{P} y^{Q}$
- $\sum_{\mu, \nu} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}$

$$
(\star) \Leftrightarrow \sum_{\substack{\lambda, \rho \\ \lambda_{1}=k}} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)=\sum_{\mu_{1}+\nu_{1}=k} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)
$$

Cauchy Identities

- $\sum_{\lambda, \rho} q^{|\rho|} S_{\lambda / \rho}(x) s_{\lambda / \rho}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}=\sum_{\lambda, \rho} \sum_{P, Q \in S S T(\lambda / \rho)} q^{|\rho|} x^{P} y^{Q}$
- $\sum_{\mu, \nu} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}=\sum_{\mu, \nu} \sum_{\kappa \in \mathscr{H}(\mu)} \sum_{V, W \in V S T(\mu)} q^{|\nu|+|x|+\mathscr{H}(V)+\mathscr{H}(W)} x^{V} y^{W}$
- $\mathscr{K}(\mu)=\left\{\kappa=\left(\kappa_{1}, \ldots, \kappa_{\mu_{1}}\right): \kappa_{i} \geq \kappa_{i+1}\right.$ if $\left.\mu_{i}^{\prime}=\mu_{i+1}^{\prime}\right\}$

$$
b_{\mu}=\prod_{i \geq 1}(q ; q)_{\mu_{i}-\mu_{i+1}}^{-1}=\sum_{\kappa \in \mathscr{H}(\mu)} q^{k_{1}+\kappa_{2}+\cdots+\kappa_{\mu_{1}}}
$$

$$
(\star) \Leftrightarrow \sum_{\substack{\lambda, \rho \\ \lambda_{1}=k}} q^{|\rho|} s_{\lambda / \rho}(x) s_{\lambda / \rho}(y)=\sum_{\mu_{1}+\nu_{1}=k} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)
$$

Cauchy Identities

- $\sum_{\lambda, \rho} q^{|\rho|} S_{\lambda / \rho}(x) s_{\lambda / \rho}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}=\sum_{\lambda, \rho} \sum_{P, Q \in S S T(\lambda / \rho)} q^{|\rho|} x^{P} y^{Q}$
. $\sum_{\mu, \nu} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)=\frac{1}{(q ; q)_{\infty}} \prod_{i, j} \frac{1}{\left(x_{i} y_{j} ; q\right)_{\infty}}=\sum_{\mu, \nu} \sum_{\kappa \in \mathscr{H}(\mu)} \sum_{V, W \in V S T(\mu)} q^{|\nu|+|x|+\mathscr{H}(V)+\mathscr{H}(W)} x^{V} y^{W}$
- $\mathscr{K}(\mu)=\left\{\kappa=\left(\kappa_{1}, \ldots, \kappa_{\mu_{1}}\right): \kappa_{i} \geq \kappa_{i+1}\right.$ if $\left.\mu_{i}^{\prime}=\mu_{i+1}^{\prime}\right\}$

$$
\text { IDEA: }(P, Q) \stackrel{\Upsilon}{\longleftrightarrow}(V, W ; \kappa, \nu)
$$

$$
(\star) \Leftrightarrow \sum_{\lambda, \rho} q^{|\rho|} S_{\lambda_{\lambda / \rho}}(x) s_{\lambda_{/ \rho}}(y)=\sum_{\mu_{1}+\nu_{1}=k} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y)
$$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- First construct ν by "squeezing" P, Q

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- First construct ν by "squeezing" P, Q

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- First construct ν by "squeezing" P, Q

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- First construct ν by "squeezing" P, Q
- From now on assume pair (P, Q) is "squeezed"

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

			1
	2	3	4
1	3	5	
2			

Q

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

P
Q

			1
	2	3	4
1	3	5	

			2
	1	3	3
2	2	5	
3			

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

P
Q

			1
	2	3	4
1	3	5	
2			

			2
	1	3	3
2	2	5	
3			

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

P
Q

Q^{\prime}

			1
	2	3	4
1	3	5	
2			

			2
	1	3	3
2	2	5	
3			

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

P
Q

Q^{\prime}

			1
	2	3	4
1	3	5	
2			

			2
	1	3	3
2	2	5	
3			

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]
$(P, Q) \rightarrow\left(P^{\prime}, Q^{\prime}\right)$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

$$
(P, Q) \rightarrow\left(P^{\prime}, Q^{\prime}\right) \rightarrow \cdots \rightarrow\left(P^{(n)}, Q^{(n)}\right)
$$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]
$(P, Q) \rightarrow\left(P^{\prime}, Q^{\prime}\right) \rightarrow \cdots \rightarrow\left(P^{(n)}, Q^{(n)}\right)$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

$$
(P, Q) \rightarrow\left(P^{\prime}, Q^{\prime}\right) \rightarrow \cdots \rightarrow\left(P^{(n)}, Q^{(n)}\right) \longrightarrow(V, W)
$$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- To construct (V, W) we define a dynamics on tableaux based on internal insertion [Sagan-Stanley'90]

$(P, Q) \rightarrow\left(P^{\prime}, Q^{\prime}\right) \rightarrow \cdots \rightarrow\left(P^{(n)}, Q^{(n)}\right) \longrightarrow(V, W)=$| 1 | 1 | 3 | 4 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 2 | 5 | 1 | 2 | 2 | 3 |
| 3 | | 2 | 5 | 3 | | |
| 3 | | | | | | |

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- It remains to construct κ.

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- It remains to construct κ.
- $\mu=$ shape of $(V, W) \quad \tilde{\lambda} / \tilde{\rho}=$ shape of $\left(P^{(n)}, Q^{(n)}\right)$ for n large

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- It remains to construct κ.
- $\mu=$ shape of $(V, W) \quad \tilde{\lambda} / \tilde{\rho}=$ shape of $\left(P^{(n)}, Q^{(n)}\right)$ for n large
- Define $\tau_{i}=\tilde{\rho}_{i}^{\prime}-n \times \mu_{i}^{\prime}$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- It remains to construct κ.
- $\mu=$ shape of $(V, W) \quad \tilde{\lambda} / \tilde{\rho}=$ shape of $\left(P^{(n)}, Q^{(n)}\right)$ for n large

$$
\tau_{1}=0=30-10 \times 3
$$

- Define $\tau_{i}=\tilde{\rho}_{i}^{\prime}-n \times \mu_{i}^{\prime}$

$$
\mu=\square \square \square
$$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- It remains to construct κ.
- $\mu=$ shape of $(V, W) \quad \tilde{\lambda} / \tilde{\rho}=$ shape of $\left(P^{(n)}, Q^{(n)}\right)$ for n large
- Define $\tau_{i}=\tilde{\rho}_{i}^{\prime}-n \times \mu_{i}^{\prime}$

$$
\mu=\square \square \square
$$

$$
\begin{aligned}
& \tau_{1}=0=30-10 \times 3 \\
& \tau_{2}=2=22-10 \times 2
\end{aligned}
$$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- It remains to construct κ.
- $\mu=$ shape of $(V, W) \quad \tilde{\lambda} / \tilde{\rho}=$ shape of $\left(P^{(n)}, Q^{(n)}\right)$ for n large
- Define $\tau_{i}=\tilde{\rho}_{i}^{\prime}-n \times \mu_{i}^{\prime}$

$$
\mu=\square \square \square
$$

$$
\begin{aligned}
& \tau_{1}=0=30-10 \times 3 \\
& \tau_{2}=2=22-10 \times 2 \\
& \tau_{3}=1=21-10 \times 2
\end{aligned}
$$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

- It remains to construct κ.
- $\mu=$ shape of $(V, W) \quad \tilde{\lambda} / \tilde{\rho}=$ shape of $\left(P^{(n)}, Q^{(n)}\right)$ for n large
- Define $\tau_{i}=\tilde{\rho}_{i}^{\prime}-n \times \mu_{i}^{\prime}$

$$
\mu=\square \square \square
$$

$$
\begin{aligned}
& \tau_{1}=0=30-10 \times 3 \\
& \tau_{2}=2=22-10 \times 2 \\
& \tau_{3}=1=21-10 \times 2 \\
& \tau_{4}=1=11-10 \times 1
\end{aligned}
$$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

\[

\]

1	1	3	4				
2	2	5	W				
3							
1	2	2	3				
2	5	3					
3							

τ
$(0,2,1,1)$

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

(0,2,1,1)

- $(P, Q) \leftrightarrow(V, W ; \tau)$ is a bijection, but τ depends on (V, W) !

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

V			
1	1	3	4
2	2	5	
3			

τ
$(0,2,1,1)$

- $(P, Q) \leftrightarrow(V, W ; \tau)$ is a bijection, but τ depends on (V, W) !

LEMMA (IMS'21)

$$
\tau_{i}=\kappa_{i}+\mathscr{H}_{i}(V)+\mathscr{H}_{i}(W)
$$

$\mathscr{H}_{i}=$ local energy function

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

τ
(0,2,1,1)

- $(P, Q) \leftrightarrow(V, W ; \tau)$ is a bijection, but τ depends on (V, W) !

LEMMA (IMS'21)

$$
\tau_{i}=\kappa_{i}+\mathscr{H}_{i}(V)+\mathscr{H}_{i}(W)
$$

$\mathscr{H}_{i}=$ local energy function

Comments on (\triangle):

- Shows deep connections between theories of skew tableaux and theories of discrete integrable systems, Kashiwara crystals, ...
- \mathscr{H}_{i} appear in the description of phase shift in the $\widehat{\mathfrak{Z l}}_{n}$ Box and Ball System
- This is because the skew RSK dynamics is a generalization of the Box and Ball Systems

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

\boldsymbol{P}			

\hline \& 2 \& 3\end{array}\right) 4\).

Q		
2 1 3 3 2 2 5 3		

1	1	3	4			
2	2	5	W			
3		1 2 2 3 2 5 3 3				

$$
\begin{gathered}
\tau \\
(0,2,1,1) \\
\tau_{i}=\kappa_{i}+\mathscr{H}_{i}(V)+\mathscr{H}_{i}(W)
\end{gathered}
$$

- To prove energy (\mathscr{H}) formulas we need to study symmetries of the skew RSK
- Classical RSK commutes with $\mathfrak{I l}_{n}$ Kashiwara operators
- Energy \mathscr{H} comes from affine $\left(\widehat{\mathfrak{k l}}_{n}\right)$ crystals

Construction of $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ (sketch)

| \boldsymbol{P} | | | |
| :---: | :---: | :---: | :---: |$\left|\right.$| | | |
| :--- | :--- | :--- |
| | | |
| | 2 | 3 |$|$

Q			
			2
	1	3	3
2	2	5	
3			

$$
\begin{gathered}
\tau \\
(0,2,1,1) \\
\tau_{i}=\kappa_{i}+\mathscr{H}_{i}(V)+\mathscr{H}_{i}(W)
\end{gathered}
$$

- To prove energy (\mathscr{H}) formulas we need to study symmetries of the skew RSK
- Classical RSK commutes with $\mathfrak{I l}_{n}$ Kashiwara operators
- Energy \mathscr{H} comes from affine $\left(\widehat{\mathfrak{G l}}_{n}\right)$ crystals
- IDEA : equip (P, Q) and (V, W) of $\widehat{\mathfrak{\mathfrak { L }}}_{n}$ - bicrystal structure preserved by RSK

Affine crystal graphs

- Vertically strict tableaux are tensor product of KR crystals
- The crystal graph $\operatorname{VST}(\mu)$ is connected [Kashiwara'90]
- Demazure subgraph: remove "bad" $\widetilde{e}_{0}, \tilde{f}_{0}$ arrows
- For any V there exist a path on the Demazure subgraph $\mathscr{L}_{V}: V \mapsto \operatorname{YAM}(\mu)$
- $\mathscr{H}(V)=\# \tilde{f}_{0}-\# \widetilde{e}_{0}$ in \mathscr{L}_{V}

Affine Bicrystal (P, Q)

- On (V, W) bicrystal structure is product structure
- Impose $(P, Q) \mapsto(V, W)$ preserve bicrystal structure
- On (V, W) bicrystal structure is NOT product structure (nontrivial $\widetilde{e}_{0}, \tilde{f}_{0}$)
- We transport maps $\mathscr{L}_{V}, \mathscr{L}_{W} \mapsto \mathscr{L}_{P, Q}$

Affine Bicrystal (P, Q)

- On (V, W) bicrystal structure is product structure
- Impose $(P, Q) \mapsto(V, W)$ preserve bicrystal structure
- On (V, W) bicrystal structure is NOT product structure (nontrivial $\widetilde{e}_{0}, \tilde{f}_{0}$)
- We transport maps $\mathscr{L}_{V}, \mathscr{L}_{W} \mapsto \mathscr{L}_{P, Q}$

Example:

Affine Bicrystal (P, Q)

- On (V, W) bicrystal structure is product structure
- Impose $(P, Q) \mapsto(V, W)$ preserve bicrystal structure
- On (V, W) bicrystal structure is NOT product structure (nontrivial $\widetilde{e}_{0}, \tilde{f}_{0}$)
- We transport maps $\mathscr{L}_{V}, \mathscr{L}_{W} \mapsto \mathscr{L}_{P, Q}$

LEMMA (IMS'21)
$\mathscr{L}_{P, Q}$ linearizes the skew RSK map

To sum up

- $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ has the following properties
- P and V have equal content. Same for Q and W
- $|\rho|=\mathscr{H}(V)+\mathscr{H}(W)+|\kappa|+|\nu|$

$$
\left(\mathscr{H}=\mathscr{H}_{1}+\mathscr{H}_{2}+\cdots\right)
$$

- $\lambda_{1}=\mu_{1}+\nu_{1}$

To sum up

- $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ has the following properties
- P and V have equal content. Same for Q and W
- $|\rho|=\mathscr{H}(V)+\mathscr{H}(W)+|\kappa|+|\nu| \quad\left(\mathscr{H}=\mathscr{H}_{1}+\mathscr{H}_{2}+\cdots\right)$
- $\lambda_{1}=\mu_{1}+\nu_{1}$

THEOREM (IMS'21)

$$
\begin{gathered}
\substack{\lambda_{1}, \lambda_{1}=k}
\end{gathered} q^{|\rho| s_{\lambda_{l / \rho}}(x) S_{\lambda_{l \rho}}(y)=\sum_{\mu_{1}+\nu_{1}=k} q^{\left|| | b_{\mu}\right.} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y) .}
$$

To sum up

- $(P, Q) \longleftrightarrow(V, W ; \kappa, \nu)$ has the following properties
- P and V have equal content. Same for Q and W
- $|\rho|=\mathscr{H}(V)+\mathscr{H}(W)+|\kappa|+|\nu| \quad\left(\mathscr{H}=\mathscr{H}_{1}+\mathscr{H}_{2}+\cdots\right)$
- $\lambda_{1}=\mu_{1}+\nu_{1}$

THEOREM (IMS'21)

$$
\begin{gathered}
\substack{\lambda_{1}, \rho \\
\lambda_{1}=k}
\end{gathered} q^{\left.|\rho|\right|_{\lambda_{l / \rho}}(x) S_{\lambda / \rho}(y)=\sum_{\mu_{1}+\nu_{1}=k} q^{|l|} b_{\mu} \mathscr{P}_{\mu}(x) \mathscr{P}_{\mu}(y) .}
$$

THEOREM (IMS’21)

$$
\sum_{\substack{\lambda, \rho \\ \lambda_{1}=k}} q^{\left|\left|| |_{\lambda / \rho}\right.\right.}(x)=\sum_{\mu_{1}+\nu_{1}=k} q^{|\nu|} b_{\mu} \mathscr{P}_{\mu}\left(x ; q^{2}\right)
$$

Conclusion

- Our bijective theory gives direct connection between solvable non-free fermionic models and positive temperature free fermionic models
- Mysterious appearence of a discrete integrable system (generalization of BBS)
- We construct a bijective q-extension of the RSK correspondence Υ
- With Υ we can prove bijectively the Cauchy identities (CI) for q-Whittaker polynomials (first time)
- With Υ we can prove bijectively refinements of the Cl relating q-Whittaker and skew-Schur polynomials

