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We study statistics on ensembles of Young diagrams: why and how ?

(Young diagram)
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We study statistics on ensembles of Young diagrams: why and how ?

A=l 2=2-224,20)= (Young diagram)

> Motivating example: SCHUR PROCESSES
Aj+n—j

det};_, (xl.’ )
Hi<j(xl' - xj)

Schur functions are positive polynomials

sa(x) = (Schur functions)

212]3]

1
sa(x) = E x" T =[2[3]5 T o Mg
-1 4 172

(semi-standard Young Tableaux)
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[ ]
A= (skew Young diagram)

> n

= T T=12]|3

s/l/p(x) = X

T~/p 4

(skew Schur functions) (semi-standard skew Young

Tableau)

» Branching rules:

Sau(Xts .o Xn) = Zs,,/lu(xl,. XS Ay Xkt 1 - - -5 Xn)

v
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» skew Schur functions satisfy:
> s 5200 = T Y) Y s/u®) s47(y)  (Gauchy Identity)
v K
» Given partitions u, A:

1
Sy,/l(v) = Z_/lsv/p(x) SV//I(Y)
i,

N v
5 : Su,a(v) is interpreted as a
S, () ‘ transition probability from a state «
g to a state v.
ST %

Tokyo Tech




> We build a random field of partitions
A = {2@)} using local moves

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(Schur random field)
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,,,,,,,,,,, > We build a random field of partitions
; A = {2@)} using local moves
/5(11) ““““““““
5 o o

(Schur random field)
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“““““““““““““““““““““““““““ > We build a random field of partitions
; A = {2@)} using local moves
// ““““““
5 o 5

(Schur random field)
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Ve
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(Schur random field)

> We build a random field of partitions
A = {2@)} using local moves
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> We build a random field of partitions

/710’2) ‘ ‘ A = {A%)} using local moves

,,,,,,,,,,,,,,,,,,,,, > Because of branching rules and

/31“%“2 = skew Cauchy Identities the joint
measure along down-right paths is

written in terms of Schur functions

(Schur random field)

Prob(A"") = 1) = sA(xt, - - xn)sa0, - - ) (Schur measure)

I(x; y) [Okounkov’01]

M(x; y)‘l_”_ll-x,y,

i=1 j=1
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> Partitions on the same row (or

bbb bbb
column) interlace
“““ M S U S
““““ .\ /l(l’t) </l(z,t) << /l(”’t)
444444 . oo o o
<<<<<< ° . » o | » Probability measures on interlacing
o o . arrays appear in random matrix
¢ ¢ theory (eigenvalues of minors of self
I R adjoint matrices)
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» Schur process [Okounkov-Reshetikhin'03] :
A< <o<n

S/ll(X1) cee S/ln//ln—l(.xn) S,ln(yl, e ,y[)
T(x;)
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» Schur process [Okounkov-Reshetikhin’03] :
A< <o<n

S/ll(X1) cee s,ln/ln-l(x,,) S,ln(yl, e ’yt)
T(x;)

> QUESTIONS

1. What is the meaning of such process? What
do they describe?

2. Does there exist a more natural way to sample
A?
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» Schur process [Okounkov-Reshetikhin’03] :

A< <o<n

s (xr) - 's/l"//l"—l(xn) San(V1s . > V1)

\ I(x; y)
ot > QUESTIONS
vl 1. What is the meaning of such process? What
do they describe?
2. Does there exist a more natural way to sample
A?

» RELATED PROCESSES: TASEP, PNG, longest increasing
subsequence, push-TASEP, eigenvalues of random matrices, etc.

» SAMPLING TECHNIQUES: RSK, Borodin-Ferrari dynamics,
Bijectivization of YBE, etc.
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. . . » A surprising fact is that the leftmost
and rightmost diagonal evolve as
autonomous Markov processes.

(Schur Process)
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» A surprising fact is that the leftmost
and rightmost diagonal evolve as
autonomous Markov processes.

(Schur Process)
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» A surprising fact is that the leftmost
and rightmost diagonal evolve as
autonomous Markov processes.

» Coordinates on the leftmost diagonal

(Schur Process) sample the TASEP
& rate | » Coordinates on the rightmost
(TASEP) diagonal sample a pushTASEP
rate 1
w (pushTASEP)
push
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TRAIN OF THOUGHTS

Cauchy Identities for special functions:

Zv sv/u(x) SV//I(Y) = H(X;y) ZK S,u/K(x) S/I/K(y)

|

| Random sampling of partitions |

|

Marginal processes of the field of random partitions might be interesting
(TASEP, pushTASEP,etc.)
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TRAIN OF THOUGHTS

Cauchy Identities for special functions:

2y Sy /(%) Sy y2(v) = THG Y) X S/ (6) S/ ()

|

| Random sampling of partitions |

|

Marginal processes of the field of random partitions might be interesting
(TASEP, pushTASEP,etc.)

What processes arise when we consider Cauchy Identities for different
special functions?
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Replacing the Schur s,,,, functions with the Macdonald functions
Paju Qaype

D Py 0a) = T Y) D Prujex) Qayy)

we obtain the MacDonald Processes [Borodin-Corwin’11]

(MacDonald Process)
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Replacing the Schur s,,,, functions with the Macdonald functions
Paju Qaype

va/p(x) Qv//l(y) = II(x;y) Zpu/K(x) Q/l/K(y)

we obtain the MacDonald Processes [Borodin-Corwin’11]

(MacDonald Process)

Diagonals of the process are still markovian.
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» ¢-TASEP and g-pushTASEP can be thought are discretizations of
the KPZ equation (stochastic PDE for growth of surfaces with
lateral growth and relaxation)

> Algebraic properties (symmetries, operators, etc.) of Macdonald
functions allow an exact study of the marginal processes and of
the KPZ equation.

» Classical limit:

Macdonald Processes — Whittaker Processes ——— SHE / KPZ

q-TASEP — Gamma Polymer ., 8,2 =0?Z—-¢Z
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QUESTION:

» What are the most general models that can be studied following
the MacDonald Processes scheme?
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QUESTION:

» What are the most general models that can be studied following
the MacDonald Processes scheme?

(PARTIAL) ANSWER:

> sl, stochastic vertex models (Six Vertex Model
[Gwa-Spohn’92],[Borodin-Corwin-Gorin’14], Higher Spin Six
Vertex Model [C-Petrov’'15], g-Hahn TASEP [Povolotsky’13],
g-Hahn PushTASEP [C-Matveev-Pe’18], etc.)
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sl, Stochastic Vertex Models:

=

. L]

> Probability of configuration of red
path = product vertex weights

£l

Vertex weights depend on many
parameters (g, s, us, 0;) and they satisfy
the Yang-Baxter equation.
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Example: g-Hahn TASEP

c O s Dok (G5 @n
(Vs @ (25 D@5 Dn—k

PLq.u,v (k|l’l) =M

Pa,u(2l9s) ©q,uw(3]92) Pq,pw(2]00)
e ' e ' @
Y3 g3 Y2 92 Yr

> ©q.u,v - q-deformed Beta-binomial
> generalization of g-TASEP
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Example: g-Hahn TASEP

OV k(s Dotk (@5 Pn
(Vs @ (45 D@5 Dn—k

Pq.u,y (k|n) =H

Xt

LCEREREEE

> ©q.u,v - q-deformed Beta-binomial

> generalization of g-TASEP

> generalization of directed random walks in Beta random
environment (fig. from [Barraquand-Corwin’15])
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RESULTS [Bufetov-M-Petrov’19,M-Petrov’??]

> We build a random field of partitions using [/, : spin g-Whittaker
functions [Borodin-Wheeler'17]

=] @1 CSD A (38D 20 @D 4= A
Faju(x) = x Iz @Dt D DA

2 B @ F, 0) = (e 3R (F,,0)-

(F/F* Process)
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RESULTS [Bufetov-M-Petrov’19,M-Petrov’??]

> We build a random field of partitions using [/, : spin g-Whittaker
functions [Borodin-Wheeler'17]

=] @1 CSD A (38D 20 @D 4= A
F’l/ () = x H (DD -1, @D -2, HD -,

2 B @ F, 0) = (e 3R (F,,0)-

Technical points that we address:

> proof that diagonals are
autonomous Markov processes

» initiate theory of operators for

g-Hahn g-Hahn functions F,F

pushTASEP . )
> give exact expressions to average

of observables of the process
(F/F* Process)
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RESULTS [Bufetov-M-Petrov’19,M-Petrov’??]

» Operators:

Zl—l(l+sx, 5N_§:l£[(l+s/x,-)T 1
Xi5 1 = gy
i 1 —x;/x; T S 1 —xj/x; 7"
J#El J#EI

DYFa(x,. . ..xn) = ¢WFa(x,. ... xn).

—N _
D Falxr, .. .oxn) = ¢ U Fa(xi, . . ., x).
» QObservables:

> Ay: current in particle system / position random walkers / height
KPz

> A;: current in particle system / partition function Beta polymer /
height KPZ
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Summary of the talk

1. Probability on interlacing partitions: Schur processes and random
symmetric matrices

2. Non free fermionic models: MacDonald processes

3. Taking the scheme to a more general level: s/, stochastic vertex
models and spin g-Whittaker processes

OPEN QUESTIONS

» complete the theory of operators of [F functions (we only got two)
> study of the full F/IF* process (not only diagonals)

> clearer connection between F/F* process and Random Walkers
in Random environment
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